

Mechanisms & Movement

v2.1

Mechanisms & Movement

Unit Overview

Unit Overview:

In this unit, students will learn how to create and convert different types of motion using Kid Spark engineering materials. Throughout each lesson, students will learn how to create a new type of motion and then apply what they have learned through a creative design challenge.

Recommended Grade Level:

2 - 5

Kid Spark STEM Lab:

Engineering Pathways OR Young Engineers

Alignment to STEM Standards:

The table below highlights how this unit is aligned to the Next Generation Science Standards (NGSS) and the International Society for Technology in Education Standards (ISTE).

- NGSS Disciplinary Core Ideas (DCI) are standards related to content knowledge.
- NGSS Science and Engineering Practices (SEP) and Crosscutting Concepts (CCC) provide a foundation for all scientific and engineering disciplines and are particularly important to develop in young students.
- STE standards are designed to prepare students to thrive in a constantly evolving technological landscape.

 Click here to view ISTE standards.

Lessons & Assessment	NGSS DCI	NGSS SEP	NGSS CCC	ISTE
Lesson 1: The Maker ROK-Bot (120 Min.) In this lesson, students will learn how to create different types of robots using the remote-controlled Maker ROK Bot and various Kid Spark engineering materials.	Engineering design	Developing & using models	Structure & function	Innovative designer, Creative communicator
Lesson 2: Rotary Motion (120 Min.) In this lesson, students will learn how to create rotary motion. Students will build a simple gear train and observe how it creates rotary motion. Then, students will create a custom design that produces rotary motion.	Engineering design	Asking questions & defining problems	Cause & effect; mechanism & explanation	Innovative designer, Creative communicator
Lesson 3: Linear Motion (120 Min.) In this lesson, students will learn how to create linear motion. Students will build a mechanism that converts rotary motion into linear motion. Then, students will create a custom mechanism that produces linear motion.	Engineering design	Planning & carrying out investigations	Systems & system models	Innovative designer, Creative communicator
Lesson 4: Oscillating Motion (120 Min.) In this lesson, students will build a mechanism that converts rotary motion into oscillating motion. Then, students will create a custom mechanism that produces oscillating motion.	Engineering design	Constructing explanations & designing solutions	Cause & effect; mechanism & explanation	Innovative designer, Creative communicator
Lesson 5: Reciprocating Motion (120 Min.) In this lesson, students will build a mechanism that converts rotary motion into reciprocating motion. Then, students will create a custom mechanism that produces reciprocating motion.	Engineering design	Developing & using models	Scale, proportion, and quantity	Innovative designer, Creative communicator

Unit Assessment: Mechanisms & Movement

In this assessment, students will answer a series of questions to demonstrate an understanding of the core ideas and concepts that were covered throughout this unit.

Target Vocabulary

The following key terms will be used throughout this unit. It may be helpful to explain these terms as they show up in lessons and challenges.

Dimensions	Innovation	Motion	Rotary
Gear	Invention	Oscillating	Speed
Gear Train	Linear	Reciprocating	Torque

Infrared Mechanism Robot

Teaching Lessons Over Multiple Class Periods

Each lesson in this unit follows Kid Spark's convergent to divergent lesson format. Lessons can easily be taught over the course of two class periods.

Class Period 1 - Convergent Learning Activity

Students building the same models, learning the same content.

Class Period 2 - Divergent Learning Activity

Students applying their knowledge through openended design challenges.

Get Engaged!

Visit our community page at **KidSparkEducation.org/Community** for new project ideas, lesson insights, and to see how other educators are using Kid Spark materials and resources in their classrooms.